Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(14): e2202514, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826799

RESUMO

Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.


Assuntos
Hidrogéis , Neoplasias , Matriz Extracelular , Microambiente Celular , Microambiente Tumoral , Biofísica
2.
Biomaterials ; 278: 121170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34628192

RESUMO

Macroporous cryogels have recently gained increasing interest for the controlled administration of signaling proteins in tissue engineering due to an advantageous combination of material properties. However, most of the previously reported cryogel systems did not allow for tunable, sustained protein release. We therefore designed a set of ready-to-use multi-armed polyethylene glycol (starPEG)-heparin cryogel systems containing different amounts of the protein-affine glycosaminoglycan component heparin to enable systematically tunable long-term delivery of different signaling proteins without affecting other cell-instructive properties. Experimental data and mathematical modeling indicate that the macroporous structure causes local differences in the concentration of proteins released into the pores and in the surrounding of the cryogels. As a proof-of-concept for their ready-to-use potential, cryogels pre-functionalized with signaling proteins and cell adhesion-peptides were demonstrated to induce the neuronal differentiation of colonizing pheochromocytoma cells. The elaborated approach opens up new perspectives for cryogels as easily storable and applicable systems for the precision delivery of signaling proteins.


Assuntos
Criogéis , Alicerces Teciduais , Polietilenoglicóis , Porosidade , Engenharia Tecidual
3.
ACS Appl Mater Interfaces ; 11(45): 41862-41874, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31589405

RESUMO

Thermoresponsive interpenetrating networks (IPNs) were prepared by sequential synthesis of a biohybrid network of star-shaped poly(ethylene glycol) [starPEG] and heparin and a poly(N-isopropylacrylamide)-polymer network. Amide bond formation was used for cross-linking of the starPEG-heparin network and photo-cross-linking with N,N'-methylenebis(acrylamide) was applied for the formation of the second polymer network. Both networks were linked by chain entanglements and hydrogen bonds only. The obtained sequential IPNs (seq-IPNs) showed temperature-dependent network properties as reflected by swelling and elasticity data as well as by the release of glycosaminoglycan-binding growth factors. The elastic modulus of the seq-IPNs was found to be amplified up to 50-fold upon temperature change from 22 to 37 °C compared to the intrinsic elastic moduli of the two combined networks. The heparin concentration (as well as the complexation of growth factors with the hydrogel-contained heparin) was demonstrated to be variably independent from the mechanical properties (elastic moduli) of the hydrogels. Illustrating the usability of the developed seq-IPN platform for cell fate control, the thermo-modulation of the release of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) is shown as well as the osteogenic differentiation of human mesenchymal stem cells exposed to stiff and BMP-2 releasing seq-IPNs.

4.
Cancers (Basel) ; 10(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150545

RESUMO

Bone is the most common site for breast-cancer invasion and metastasis, and it causes severe morbidity and mortality. A greater understanding of the mechanisms leading to bone-specific metastasis could improve therapeutic strategies and thus improve patient survival. While three-dimensional in vitro culture models provide valuable tools to investigate distinct heterocellular and environmental interactions, sophisticated organ-specific metastasis models are lacking. Previous models used to investigate breast-to-bone metastasis have relied on 2.5D or singular-scaffold methods, constraining the in situ mimicry of in vitro models. Glycosaminoglycan-based gels have demonstrated outstanding potential for tumor-engineering applications. Here, we developed advanced biphasic in vitro microenvironments that mimic breast-tumor tissue (MCF-7 and MDA-MB-231 in a hydrogel) spatially separated with a mineralized bone construct (human primary osteoblasts in a cryogel). These models allow distinct advantages over former models due to the ability to observe and manipulate cellular migration towards a bone construct. The gels allow for the binding of adhesion-mediating peptides and controlled release of signaling molecules. Moreover, mechanical and architectural properties can be tuned to manipulate cell function. These results demonstrate the utility of these biomimetic microenvironment models to investigate heterotypic cell⁻cell and cell⁻matrix communications in cancer migration to bone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...